Here is a full transcript to Github of Bret Victor’s “Inventing on Principle”. It was transcribed by me, An Yu and Tal Benisty.
Below is a copy of the transcript which I will endeavor to keep up to date with the Github copy. The original content was licensed under CC-BY.
[[0:07]] So, unlike the previous session, I don’t have any prizes to give out. I’m just going to tell you how to live your life.
Read more...
It can be hard to understand the appeal of spending three days, without sleep, solving what some have called “the hardest recreational puzzles in the world,”; but over this weekend, hundreds of people converged on the MIT campus to do just that, as part of MIT Mystery Hunt. To celebrate the finding of the coin, I’d like to share this little essay that I found in my files, which compares Mystery Hunt and the scientific endeavour. (If you are not familiar with Mystery Hunt, I recommend listening to the linked This American Life program.)
Read more...
I spent part of my year in Cambridge reading the History and Philosophy of Science course. It has been a thrilling and enlightening course, and I cannot recommend it highly enough for anyone lucky enough to take the HPS strand at Cambridge. Of course, I was a bit of an odd one out, since the course is designed for Natural Science majors, and I am, of course, a Computer Scientist.
Read more...
One of the persistent myths about Aristotelean physics—the physics that was proposed by the Ancient Greeks and held up until Newton and Galileo came along—is that Aristotle thought that “heavier objects fall more quickly than light objects”, the canonical example being that of a cannon ball and feather. Although some fraction of contemporary human society may indeed believe this “fact,” Aristotle had a far more subtle and well-thought out view on the matter. If you don’t believe me, an English translation of his original text (Part 8) adequately gives off this impression. Here is a relevant quote (emphasis mine):
Read more...
I recently attended a talk which discussed extending proof assistants with diagrammatic reasoning support , helping to break the hegemony of symbolic systems that is predominant in this field. While the work is certainly novel in some respects, I can’t also but help think that we’ve come back full circle to the Ancient Greeks, who were big fans of geometry, and its correspondingly visual form of reasoning. The thought came up again while I was reading a mathematics text and marveling at the multiple methods of presenting a single concept. In this essay, I’d like to look at this return to older, more “intuitive” forms of reasoning: I’ve called it “Hellenistic reasoning” because geometry and the Socratic method nicely sum up visual and interactive reasoning that I’d like to discuss. I argue that this resurgence is a good thing, and that though these forms of reasoning may not be as powerful or general as symbolic reasoning, they will be critical to the application and communication of abstract mathematical results.
Read more...
In his book Against Method, Paul Feyerabend writes the following provocative passage about ‘ad hoc approximations’, familiar to anyone whose taken a physics course and thought, “Now where did they get that approximation from…”
The perihelion of Mercury moves along at a rate of about 5600" per century. Of this value, 5026" are geometric, having to do with the movement of the reference system, while 531" are dynamical, due to the perturbations in the solar system. Of these perturbations all but the famous 43" are accounted for by classical mechanics. This is how the situation is usually explained.
Read more...